
Author Andy Saunders

Record ID TT012071213002.as

TECHNICAL TIPS

PRODUCT: BioLock

Subject: Script outputs from BioLocks

Date: 13th December 2007
Revision: 2

BioLock Windows software from version 56 onwards has the ability to perform a
logical output on successful verification of a user’s finger by means of a script
output.

This is perhaps most useful for integrating with home automation systems or for
integration with other software (using a BioLock for logical access rather than
physical access).

There are two places in the application to use scripting.

Firstly, for anonymous actions or those related to the unit hardware, scripts can
be run on events such as “Identify failed”, a tamper switch transition, a timezone
transition (either for a door hold-open or a REX function timezone), a REX event,
a unit connection/ disconnection or the SIOB relay board going on/offline.

To enable this scripting, in the Units screen right-click on a unit on which you wish
to run a script output and “configure access rules”. Add a rule that has “Script” as
an action corresponding to the event you wish. You can add multiple script rules,
and you may also want to delete any existing rules that provide a physical action.

The script (including path) you wish to run should then be entered in the
Command File field, and any options and parameters you wish to pass to the
script entered in the appropriate fields. See later for an explanation of the
parameters that are passed to the script.

Author Andy Saunders

Record ID TT012071213002.as

If setting up multiple units for which you wish to run the same script(s), right-click
instead on “Configure Units” and select “Configure Default Access Rules for All
Units”. Adding scripting rules here means that any new units added would inherit
these default rules (to save having to set up each unit individually).

Secondly, for identification events (successfully recognising a user’s finger), in
the users sceen right-click on a user and select “Configure Access Rules”.

Author Andy Saunders

Record ID TT012071213002.as

There is a third place that scripting can be used. To enable this, the config.ini file
has to be edited (usually found in Program Files\BioLock and can be edited with
Wordpad or another text editor), to add the following lines:

[Enrollment Scripting]
ScriptFile = P:\MTMatcher\Debug\Test.vbs
ScriptOptions =
ScriptCommands =

These ScriptOptions and ScriptCommands are the same values you would use in
the other scripting features in the other parts of the application. The event is
"Enrollment".

The script gets fired once for each template that has been enrolled when the "Ok"
or "Apply" button is pressed on the User screen.

You don’t have to use a script file as the Command file. You can use any
Windows executable file – you could choose a JavaScript file or a plain old
“*.exe”. Note that the VBScript examples all assume that your PC has Windows
Script Host version 5.6 installed (this is the default). You can tell the version
installed by typing (in a DOS box): Cscript

All scripts/executables will be passed the event characteristics on the command
line. There are at least 9 system level parameters supplied by the BioLock
application. Some of these parameters may contain spaces. If so, the relevant
parameter will be enclosed in double quotes (""). If the system parameter is not
applicable to the event that fired this script then the parameter value will be set to
NotApplicable.

The system parameters will be: /YYYY-MM-DD /HH:MM:SS /EventName /UserID
/UserName /FingerName /SourceUnitID /SourceUnitDescription
/SourceUnitIPAddress

You can also supply your own parameters from the “Command Parameters” edit
field in the dialogue box. User-supplied parameters appear after the system
parameters described above. If they contain spaces then they must be enclosed
in double quotes. Each parameter must be delimited (preceded) by a '/' character.

Author Andy Saunders

Record ID TT012071213002.as

The “Command Options”
field can be used to
trigger a script debugger
if you have one installed.
When an event triggers
this script the user will be
prompted with a choice of
debugger to run the script
through. See left – this is
very useful for debugging
scripts. You can use
Visual Studio or you can
download the free
Windows Script debugger
from the internet. To
trigger the Windows
Script Host debugger the
Command Option is: //X

A sample script is included below, which if inspected could be used as a template
for development of your scripts, or to understand the command parameters and
options (this test script is included on the CD-ROM included with BioLock version
58 and greater):

'**
'* Function: intParseCmdLine
'*
'* Purpose: Parses the command line arguments to the variables
'*
'* Input:
'* [out] strMachine machine to query events from
'* [out] strUserName user name to connect to the machine
'* [out] strPassword password for the user
'* [out] arrFilters the array containing the filters
'* [out] strFormat the display format
'* [out] strRange the range of records required
'* [out] blnVerboseDisplay flag to verify if verbose display is needed
'* [out] blnNoHeader flag to verify if noheader display is needed
'* [out] objLogs to store all the given logfles
'* Output: Returns CONST_PROCEED, CONST_SHOW_USAGE or CONST_ERROR
'* Displays error message and quits if invalid option is asked
'*
'**
Private Function intParseCmdLine(ByRef fp_strDate, _
 ByRef fp_strTime, _
 ByRef fp_strEvent, _
 ByRef fp_strUserID, _
 ByRef fp_strUserName, _
 ByRef fp_strFingerName, _
 ByRef fp_strSourceUnitID, _

Author Andy Saunders

Record ID TT012071213002.as

 ByRef fp_strSourceUnitDescription, _
 ByRef fp_strSourceUnitIP)

 ON ERROR RESUME NEXT
 Err.Clear

 Dim strBLSystemArg ' to temporarily store the BL system given arguments
to script
 Dim strTemp ' to store temporary values
 Dim intArgIter ' to count the number of arguments given by user
 Dim intArgLogType ' to count number of log files specified - Used in
ReDim
 Dim intFilterCount ' to count number of filters specified - Used in
ReDim

 strBLSystemArg = ""
 intArgLogType = 0
 intFilterCount = 0
 intArgIter = 0

 ' Retrieve the command line and set appropriate variables
Do While intArgIter <= Wscript.arguments.Count - 1
 strBLSystemArg = Wscript.arguments.Item(intArgIter)

 IF Left(strBLSystemArg,1) = "/" OR Left(strBLSystemArg,1) = "-"
Then
 strBLSystemArg = Right(strBLSystemArg,Len(strBLSystemArg) - 1)

 Select Case intArgIter

 Case 0
 fp_strDate = strBLSystemArg
 Case 1
 fp_strTime = strBLSystemArg
 Case 2
 fp_strEvent = strBLSystemArg
 Case 3
 fp_strUserID = strBLSystemArg
 Case 4
 fp_strUserName = strBLSystemArg
 Case 5
 fp_strFingerName = strBLSystemArg
 Case 6
 fp_strSourceUnitID = strBLSystemArg
 Case 7
 fp_strSourceUnitDescription = strBLSystemArg
 Case 8
 fp_strSourceUnitIP = strBLSystemArg
 Case Else
 'User supplied parameters always come after the system parameters
 End Select

 End IF

 intArgIter = intArgIter + 1
Loop '** intArgIter <= Wscript.arguments.Count - 1

End Function

'**
'* Sub: VBMain
'*
'* Purpose: This is main function to start execution
'*
'*
'* Input/ Output: None
'**

Author Andy Saunders

Record ID TT012071213002.as

Sub VBMain()

 ON ERROR RESUME NEXT
 Err.clear

 If (WScript.Arguments.Count = 0) Then
 call MsgBox ("Hello World!", 65, "MsgBox Example")
 Else
 Dim strDate
 Dim strTime
 Dim strEvent
 Dim strUserID
 Dim strUserName
 Dim strFingerName
 Dim strSourceUnitID
 Dim strSourceUnitDescription
 Dim strSourceUnitIP
 Dim intOpCode

 intOpCode = intParseCmdLine(strDate, _
 strTime, _
 strEvent, _
 strUserID, _
 strUserName, _
 strFingerName, _
 strSourceUnitID, _
 strSourceUnitDescription, _
 strSourceUnitIP)

 call MsgBox (strDate + " " + strTime + ", " + strEvent + ", " +
strUserID + ", " + strUserName + ", " + strFingerName + ", " +
strSourceUnitID + ", " + strSourceUnitDescription + ", " + strSourceUnitIP,
65, "MsgBox Example")

 WScript.Echo (strDate)
 WScript.Echo (strTime)
 WScript.Echo (strEvent)
 WScript.Echo (strUserID)
 WScript.Echo (strUserName)
 WScript.Echo (strFingerName)
 WScript.Echo (strSourceUnitID)
 WScript.Echo (strSourceUnitDescription)
 WScript.Echo (strSourceUnitIP)

 End If

End Sub

' to include the common module
' Dim component ' object to store common module

' Set component = CreateObject("Microsoft.CmdLib")

' referring the script host to common module
' Set component.ScriptingHost = WScript.Application

' Calling the Main function
Call VBMain()

' end of the Main
Wscript.Quit(EXIT_SUCCESS)

Author Andy Saunders

Record ID TT012071213002.as

FURTHER INFORMATION:

support@brsgrp.com
Bio Recognition Systems
+61 (0)2 9882 8600

Bio Recognition Systems Pty Ltd is a 100% Australian owned and operated hardware and
software developer and manufacturer. Located in Lane Cove, Sydney, Bio Recognition Systems
Pty Ltd began by offering its customers software and hardware solutions in 1999. Its leading
edge BioMetric technology harnesses the power of the newest technology in fingerprint
recognition.

